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ABSTRACT

The following two multiple integrals are evaluated

m-1 0o

Il j Kr (Xr)dX K [x(Xkl..X x l
0 r r r ji -

Also the asymptotic behavior of the two integrals as Ix 1-0

andas lxl-co isgiven.



MULTIPLE INTEGRALS INVOLVING PRODUCT
OF MODIFIED BESSEL FUNCTIONS OF THE

SECOND KIND

F. M. Ragab

1. Introductory. It is proposed to establish the two following integrals:

If m = 3, 4, ... I

m-I co k-1nlJXo K (k)d X K x
r=1 0 "r r-

m-i

Yi k +1-2m
r= r

=2

k -V km V k -v -i

'2 '' 2 " 2 2' .

(1)

where x is real and positive and the symbol , means that in the expression
i, -i

following it i is to be replaced by -i and the two expressions are to be added.

If R(k - v r.' ) >0, r=l, 2,..., m-ir r

m-I oo k-i
,f X r K (X )d X r K(xXX)

r~ 0 r r 1 12 ml1r--1 0 r

k
Z k -Zm+l

2r=i r 2 sI L (2m-42) 2
= ' sin L (

[k1  l-L k,-vl-L ki-1 + vm-1-fL krml-Vm-iFL e

XE1 2  2 2 2 2 Zm-4x2

L l
(2)
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where m = 2, 3, 4, ... , x is real and positive and the symbol Z has the

same meaning as before. The function appearing in (1) and (2) is Mac Robert' s

E-function, the definitions and properties of which are to be found in [1j;

pp. 348-352 and in [ 2] ; pp. 203-206. The following formulae will be required

in the proofs:

If R(s -- ) >0, then ([3], p. 197 and p. 7)

00

X K (X) dX = Zs -  r(S ) r( ) (3)

0 2

c+ioo SqLL
(x) - fz x ds (4)L 2ni c-iCO 2

If P>q+l, then([I], p. 409)

E(p;a q;p z) = 1 ' ra -a) {r(pt-a)} r(a) z r
r S r=l s=l s r t r r

a- 1 .+,..., a-a +a
r r p

where jarg z1 <- (p-q+l) i; the prime in the product sign signifies that the

factor for which s = r is left and the asterisk in the F function means that the

parameter a - a + 1 is omitted.
r r

If p <q, then ([I], p. 352)

.r(al)'r(a) a 1"i p z  6

E( p; ar: q, ps: z) = a!)... ((6)) l' "' P6
r sr(p 1 ). J(p F ( I P

If m is a positive integer
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1 1

n(z) ]iz+-)... r(mz) (7)
m m

If m is a positive integer, then ([4], p. 759)

l E(p; ma. q; mps : z e
. 1 r

( z ) 2 m2

a .,. .. ,' . .. , ..a'-LZ L - Z m e i i
IE - 1 * p rnIn mi

X i pmEm
i,-i 12 rm-I 1 rn-I p + l

Mme i 'Pl.PI+ I' P" m-' q q q ''m m
~~1

where p >q+1 and Iarg zl <-(P-q-l)rr . (8)

If Iarg zI <l(p-q+l)-T, then, ([I], p. 374)

p
ii r(a-g)

•- r l r
E(p;a .q;p s z) = - - fr() z dt (9)

r s2.i q
II r(p t-)

t=1

where the integral is taken up the p-axis, with loops, if necessary, to ensure

that the pole at the origin lies on the l.eft and the poles at a1 , a2 , ... , a to
P

the right of the contour. The contour must be modified if p <v +1 and p =q + I

IzI <I

Also the proof depends on the expression in terms of E-function of the gen-

eralized E-function

#541 -3-



/pia Im P
r mq+s .

E=

S/p+r

p m
II r(a-) II r(g-p +1)

1 f r(g) '=l s=l q+s z9 d (0)

11 r(ps-) ii (- +1)
s=l r=l p+r

where I and m are positive integers and the contour passes up the ri-axis

from -co to + , with loops, if necessary, to ensure that the poles of the in-

tegrand at the origin and at p 1) " 4 - Pq- lie to the left and the

poles at a? cr, ... , a to the right of the contour. When necessary the con-
p

tour is bent to the left or to the right at both ends until it is parallel to the

-axis.

Th'i s expansion ([1], p. 419) is

ar m;Pq+s . m
E =IT - II Sint a 7)

q; sr=1 p+rS/ p+r

m
IT cosec(p q+sr) E(p+l; ar . q+m; p s: wz)
s=l

II sln(p - )T

m - r=l q+s -p+r) 7r

s=l m
sin( pq+s ir) nl sin( q+s-Pq+t ) ir

t=lt

p+ I  a r - P q+s + 1 wz
XE -Pq77 apl- ~ + q n€.l (1

q+s PPq+s+ ...... , Pq+m-Pq+s+
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where the prime and the asterisk denote that the factor sin(p qs-Pq+s )7r and

the parameter pq+s-pq+s+l are omitted and w is equal to 1 or e according

as I +m is even or odd.

To familiarize ourselves with the E-function the following relations may be

worth noting; they will, however, not be used here. From the definitions (5)

and (6) of the E-function it is clear that the E-function is immediately related

to the generalized hypergeometric function and reduces to simple expressions in

the ordinary or Gauss hypergeometric function when p = 2, q = 1. For p = 1

and q = 1 it is also evident that the E-function reduces to the confluent hyper-

geometric function or Kummer' s function. The case p = Z, q = 0 yields the

relations [see [1], p. 351].

cos n 1T E(I + n, L-n 2 Zz) ='A2nz) c ZK (z), (12)n 21

E( -k+m, -- k-m.. z, = F( -k-m) r(- -k+m) z e W z) (13)Z ' 2 2 kym

where K (z) and W m(z) are the modified Bessel function of the second kind

and Whittaker function. Also it is immediate from the definition of the E-function

that for p = q = 0 the E-function is just e l/' and we have
I
z

E(:: z) = e . (14)

More complicated parameters in the E-functions lead to the equivalence of the

E-function with products of Hankel functions, with Lommel functions and with

products of Whittaker functions. Some examples of this are:

! ' 1 1 1 .. 1 2in.
K(z) =- I j.-1 xe (15)4T. i 4,2 .7

#1-i
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5
x2 H() 2 2CosVT x-I E(v I1

S Vx (x ) r L + Vos I=(x -'7" x ) (6
2 1  2 2 22 2 (6

1 1 ! 1 1 1 -1lx -
S (x) ={r(- _±-j) r(j_7FL+;v)} (-)

X E(1, 1 1 1 11_ )

7 -7 +7 ,  -7 - (17)

Xk W-(kx) = I
2T 3/Z

F 1, 1 1 1 1 M i7 -

-J (18)L,- 1+ k, I - k

Wk, m (2ix) Wk (-Zix) = -, 2 x )k
-k m I(7)

k) Ft'I -k+m,F- k-rn,F-k -k. -
x 2r( -k+m) r(L-k-m) E[ 2k

1 - 2k

2 L 4 4) ?3 L-3. 2 (19)

2IT 2 I _-  ' 64 e (20)

§ 2. Proofs of the integrals.

To prove (1), apply (4) to replace K on the left of (1) by

2rri f 2 s + '.2 (i- i.m-l +ds

Then, on changing the order of integration and evaluating integrals by means of

(3), the multiple integral becomes

-6- #541



I .S-Z j, -s2mi f2+m-1

r-k 2m +km-I k +s-2 k V k v r=lr

X {zr r +- + F(+ - -)} ds 2 x

m-i k v k vf (-)rII -  {r(-L + - -) r(---g-) -- ) dt
2ni 2 1 2 2 2

m-1

Z k - 2m+l
r=l r

XT;- 2 2

m-I kr v k v 2 {eTr -i-
H nr(, +-2- ": r r - r( ) e-d

r=i 2 2 24mZi

where we have used the relation

r( ) r(i-g) _T
sin

Now apply (9) with p = 2m + I, q = 0 and so obtain (I)

Again on substituting for K ( xX... 1 xm 1 ) on the left of (2) from (4) and

changing the order of integration as before, the multipie integral is found to be

equal to

m-i k -s-2 k v
1 s--s_2 2 2 {2 r( +

2 2 Z r=l

k v
r( rs ))z- ds

m-!

Zk -2m+l
r=l r f +-

2iri 2 2

m-I k v k v -2
x ii {(--±+± ) +( ---L- )}( ) d

r=l 2 2 r-4) d

#541
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and on applying (11) with m = 2, q Y- = 0, the expression on the right of (2)

is obtained.

§3. Particular cases.
In (1 tak k -2r

In (I)rtake kr = V = (r=l,2, ' '.,m- 1) and it becomes

2r

ff f X m K ()dX KI x
r=l 0 r r L.K ..A -

2-mx 1 rn-I

2ii E ' 2 m ' . E

m m '2

~ rn+ irr x
22m

Now apply (8) with p = a 2 = a = then the last

expression becomes

f~ coK l -rn-i ~2r 1

I f Xm K (X )dX K xr=1 0 r r r ... X 1 Xn_1

I M miTr mxm  rn-IZ,- l e T K (mx ), by (15)

Thus we have, if x > 0

rn-I _2r1TI f km' K(XdK( l.Xkm rn-I m
STr K (mx . (21)r=l 0 r pt r r [LX I... X 1  M11

Formula (21) is a generalization of Hardy' s formula (m = 2) ([5], p. 190)

namely

00

fK (X) rK(2v(x)) (22)0 1L 2±

where x > 0

-8- 
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Inr(1) take k -r V (r=, 2,. m-1), apply the formular m' r Z ' 2"

K (x) =-( x)eX , (23)
1 ZX

2

and it becomes

1 1O 1Xr -I I 1
rn-i co -X -l- X...Xm_ z-m -in -

If erL dX e -i= 2 x2

r=l 0 r r

11 1 1e"

2 .1 4 4 2m + m
1, -

2

i miM

1_ rn-i I 1 rn-I I'" e r x-
...,4 + -

. -1 e• -

(-1)

mn ' 4 x)2

-jr.-. in i* i

=x (2) i n E(m*'" m '. e X m)

1
by (S) with a, =-I a -- q = 0 ,and so we obtain

x
-- l X 1 de .. fe e-r n-

Xm d l " f" m-I dXm 1  e

0 10 m
1 1

1 1
-2(m m ) 2 -mx

=(2) m e (24)

where x is real and positive.

Again in (i) , take m = 2, and expand each E-function on the right of (1)

by means of (5) and combine the two resulting expressions, so getting,

#541 -9-



co xk-+1 -  k+,L+v .k+ t-v
fX KXX) K ( )dX ?k- (+r _r( _

0 IL 2 )r

22
Xoj 3 ( - i 1- k+v+± _.+±-v. x_

+ 2 -k-2v-3 r(--) r( kv r( ) x
V -( 2 2

22
X 0F (; I v 2~ - +  1 +kj- +V+ . (25

where x > a- and each of the symbols , has the same
j±,-fL V-V

meaning as before.

In (2), take m = 2, and get

fXk-l K (X) K (xk)dX = 2k-3
v L

X- t r( k~v- )iL-k-v-I ) r(t

1*, -P.
2 2 ~J
Fk+v- bt) k-v-LK I 2 z

2 1%- 2;x

Now sum the two hypergeometric series of Gauss by the formula

F(a,b;c;2) =E (l-Z)-a r(c) r(b-a F 1
a, b 1(b) r(c-a) 2FI(a, c-b, a-b + ;

where larg(1-z) I <Tr, (25)

and so obtain Titchmarch' s formula ([6] p. 98) namely

-10- 
#541



f Xk- K (X) K(xX)d X Zk-3 {1(k) }-1 x-v-k

0 IL

k+_+v k+L.-v k+v-. (k

F (k+ ±+v k+v- 1(2
Z " ';k; I- )7 , 6

x

where R( k v)> 0 and x is real and positive.

In (2) take m = 3, and obtain the double integral

00 00 k -1 k-I
ff X 1 K( ) Xz K( k 2 ) K (xIX2 )dXldX?0 0 I

k +k - 51zl 2 osec() (16x) 2

XF -k1+ vgi k,-v,-iL 2Zv-, k2 -vZ-,p e-.ir(7
X L2 z L 2 ' (27

where

R(k14 VI-t)>0, R(kz " v2 - ) >O01 x is real and positive.

§3. Asymptotic behavior of the integrals:

Now we are in a position to find the asymptotic expansion of the two multiple

integrals (1) and (2) for large and small values of lxi; for the asymptotic

expansion of the E-function is given by Mac Robert ([I], p. 358)

If p>q+l

E(p; ar: q; ps : z) ,- the first m terms of the divergent series

r( ) ... Ir(a )1
F (p; a; q; p; - )+ Rm(8r(P1)... r(Pq) p r s z m+l

#541 -11-



where R is a remainder which tends to zero as I z I -w and m - co
in+l

And the other functions that occur can be expressed in terms of ordinary

generalized hypergeometric functions whose asymptotic expansions have been

investigated by several writers (Barnes, [7] and [8], Wright [9]). However,

an alternative proof for the asymptotic expansion of the integral (1) as lxi -

will be established. Thus we shall prove, for large values of I xi, the follow-

ing asyrizptotic expansions

m-l o k-1
F f X r K I[X)dX K ( x

r=l G r Vr r 1 M-1

m-k -Zm+l I Ix -

~r r r2zrlr exp 2-m( x )2 ( 2-r

2 2 2

x 'T 4 1 2 Z9)
(m) Zm X ) Zm

where the coefficients M 1 and M 2 do n6t depend on x but are complicated

functions of the kr; v i(r=l, Z ... , m-1)

m-I 0k-
II f Xk K (%) dX K (x) ,...X )'-1

r=l 0 r V r i m-l

2(m-1) k - 2m+l Tr 2cosec( r) (22m-4 x2 2

2 r r co~ r) (2r
m-l2 -v.-vr k+Vr
r=l v-Vr ( z ) (v)r

21 r(vr

± i k k +v - +_k r . 4-2m -Z

r F---' - - x

VZZm-  Vr+VI Vr+V Vr-V Vr-

r 2 ' 2 +1,1+ Z

-12- # 41



where, for simplicity, we have taken kr = k(r = 1, 2, ... , m - 1, (30)

To prove (29), substitute from (9) for the E-functions appearing on the right,

then it becomes

m-1Z-1 k r-2!m +1 r € - s r(--'- s) m-1 k +vr
--m- 1 f {- r1 ( r rnS)

2IT 1r=l

k-v Z sr( r r -s -) x( - -

2 2rm

m-i
Z, ""-Zm+l
r=l r

=z .1 (31)

We next show that
1 1 1

2 2  2mn2
(Zrr) (2m) exp{(2m) (x -)m}I f=- f S(s) x) ds, (32)

2 2mrr 2 2

where

S (S) -E r(,,- + Um --s) + U mS
n=0

m-i k +v k -v{r( r + u s) r( r + s )

X Zm . (33)
.u+r

r =1

To see this we substitute the value of S( s) in (32), the right hand side

becomes

#54i -13-



001-f (+ ___s) r(-R +u U-S)

2m 2 2m

r=1

Here change s -s + U and obtain
Zm

.2 2m -1
1 ( x 2M m u+r

27iu=0 2 2mr=1 2

X f r(R - s) r(~Us -i {r( r +vr -s r -Vr s)} - d2S,
2 2 -s'aIr 2 - M d

r=r 2

which is, in virtue of (31), equal to

0 x 2  1 1+ ml -

Z~i [ ( x- Zm r(u+--!-z ,(u2 -+ 2m - 1

n=0 2 mlm 2 2m

We now use (7) with 2m instead of m to obtain

ImII-JI I + -l -)

00 2(-s "TK-) 2I {(2m r r )r r__1)} s

n= 2 2

which is equal to
11

2O 2 (2) 2 uxl j(2( ) 2m I
Wit (32) st(b)lihd we uizte resultof Btaneonteayptiex

} -I
n=0 2 r~u=l

1 1 1
=(2r)2 (2m) exp{(2m)(-Zm)m} I

With (32) established, we utilize the results of Barnes on the asymptotic ex-

pansions of the generalized hypergeometric functions (see [7], pp. 296-297,

and [8], pp. 80, 108, 110)- for the asymptotic expansion for the expression on

-14- #541



the right of (32), which holds when x is large and so
m-1 1- !-  2 m [ Z kr+-- m]

212 212 r=1-i
i-'exp {-2m(-2 -)2m r r 2 m

2 m2 2M

1
rn- 2  M Mx {z r) 1 2X T27 + 2 1 + 2 1 +

(x-2m (-)-m
22m 

2

and so (29) is established.

By applying (5), formula (30) can be established for large values of x

Of course the leading term in the asymptotic expansion of (29) is

k-IZk - 2m+l 1

r=l r 1 2(Z --- 2 rn(Zlr) 2 exp {-2m(-- - )

m-I I" [ Z kr+-- m]

x r=!
x (-- m) (34)

2m

2r
We now consider the special case k =- and v = L(r =1 22 ...,I m-I)

r m r I

and show that the result (34) agrees with the asymptotic expcftriion of K (mx )

Zr
which appears on the right of ( 21). We substitute k = Z v= (r=lY, 2)...m-l)r m "''

in (34) and it becomes

#541 -15-



1 1 1

2 m-1-2 m+1 (2 2 (2m) 2 exp {-2m(m ) 2M

1 1

2 m-l- -M)

r-n- 2  - m-2 - 2m
2 2 xx 2 2rn 2= 2 m (ir) ex{-2rn(-- )) }x

2m

m-1 1 -mx 1/ m

-Tr '/ e4( 2-ffx t m

which agrees with the asumptotic expansion of the right hand side of (21)

because

1 -X as x-

Again we can write the asymptotic expansions of the integrals (1) and (2)

as xI -Woo . For the asymptotic expansion of (1) as Ixi -oo is obtained by

expanding each E-function on the right by means of (5), and combining the

two resuiting expressions by factoring out common terms.

The asymptotic expansion of the integral (2) can be written at once in

virtue of (28) in the form

-16- 4;41



rn-1 co k -1
II f xrK (X d X K (xXXlk...

r -l r v r r r L 12 r-

rn-1

kZ r n 2mZr-Z 2 2~

2 * T ,Losec L±T (Z2 x)

(35)
rn-1 k +v -ti k v

'''22r 2

rrU

2rn-2 1 2  2 2 z 2 rn4)

#541 -17-
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